99075ad22a
* whisper skeleton * basic message store * rallying and message logic * pass host info to network protocol handlers * choose who starts rally based on node key * module reshuffling * mining messages * prune messages by low PoW until below size target * associated error type for ethkey generators and `OsRng` generator * beginnings of RPC * generic message handler for whisper * reshuffle code order * standard payload encoding and decoding * basic crypto * minor restructuring of net code * implement shh_post * merge? * implement filters * rand trait for hash types * filter RPCs for whisper * symmetric encryption of payload * pub-sub * filter tests * use only secure random IDs * attach arbitrary protocols to network * basic integration of whisper into Parity * eagerly prune low PoW entries * broadcast messages with salted topics * node info RPC * fix import * fix leading zeros calculation * address minor grumbles
131 lines
4.2 KiB
Rust
131 lines
4.2 KiB
Rust
// Copyright 2015-2017 Parity Technologies (UK) Ltd.
|
|
// This file is part of Parity.
|
|
|
|
// Parity is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// Parity is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
use super::{SECP256K1, Public, Secret, Error};
|
|
use secp256k1::key;
|
|
use secp256k1::constants::{GENERATOR_X, GENERATOR_Y, CURVE_ORDER};
|
|
use bigint::prelude::U256;
|
|
use bigint::hash::H256;
|
|
|
|
/// Whether the public key is valid.
|
|
pub fn public_is_valid(public: &Public) -> bool {
|
|
to_secp256k1_public(public).ok()
|
|
.map_or(false, |p| p.is_valid())
|
|
}
|
|
|
|
/// Inplace multiply public key by secret key (EC point * scalar)
|
|
pub fn public_mul_secret(public: &mut Public, secret: &Secret) -> Result<(), Error> {
|
|
let key_secret = secret.to_secp256k1_secret()?;
|
|
let mut key_public = to_secp256k1_public(public)?;
|
|
key_public.mul_assign(&SECP256K1, &key_secret)?;
|
|
set_public(public, &key_public);
|
|
Ok(())
|
|
}
|
|
|
|
/// Inplace add one public key to another (EC point + EC point)
|
|
pub fn public_add(public: &mut Public, other: &Public) -> Result<(), Error> {
|
|
let mut key_public = to_secp256k1_public(public)?;
|
|
let other_public = to_secp256k1_public(other)?;
|
|
key_public.add_assign(&SECP256K1, &other_public)?;
|
|
set_public(public, &key_public);
|
|
Ok(())
|
|
}
|
|
|
|
/// Inplace sub one public key from another (EC point - EC point)
|
|
pub fn public_sub(public: &mut Public, other: &Public) -> Result<(), Error> {
|
|
let mut key_neg_other = to_secp256k1_public(other)?;
|
|
key_neg_other.mul_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;
|
|
|
|
let mut key_public = to_secp256k1_public(public)?;
|
|
key_public.add_assign(&SECP256K1, &key_neg_other)?;
|
|
set_public(public, &key_public);
|
|
Ok(())
|
|
}
|
|
|
|
/// Replace public key with its negation (EC point = - EC point)
|
|
pub fn public_negate(public: &mut Public) -> Result<(), Error> {
|
|
let mut key_public = to_secp256k1_public(public)?;
|
|
key_public.mul_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;
|
|
set_public(public, &key_public);
|
|
Ok(())
|
|
}
|
|
|
|
/// Return base point of secp256k1
|
|
pub fn generation_point() -> Public {
|
|
let mut public_sec_raw = [0u8; 65];
|
|
public_sec_raw[0] = 4;
|
|
public_sec_raw[1..33].copy_from_slice(&GENERATOR_X);
|
|
public_sec_raw[33..65].copy_from_slice(&GENERATOR_Y);
|
|
|
|
let public_key = key::PublicKey::from_slice(&SECP256K1, &public_sec_raw)
|
|
.expect("constructing using predefined constants; qed");
|
|
let mut public = Public::default();
|
|
set_public(&mut public, &public_key);
|
|
public
|
|
}
|
|
|
|
/// Return secp256k1 elliptic curve order
|
|
pub fn curve_order() -> U256 {
|
|
H256::from_slice(&CURVE_ORDER).into()
|
|
}
|
|
|
|
fn to_secp256k1_public(public: &Public) -> Result<key::PublicKey, Error> {
|
|
let public_data = {
|
|
let mut temp = [4u8; 65];
|
|
(&mut temp[1..65]).copy_from_slice(&public[0..64]);
|
|
temp
|
|
};
|
|
|
|
Ok(key::PublicKey::from_slice(&SECP256K1, &public_data)?)
|
|
}
|
|
|
|
fn set_public(public: &mut Public, key_public: &key::PublicKey) {
|
|
let key_public_serialized = key_public.serialize_vec(&SECP256K1, false);
|
|
public.copy_from_slice(&key_public_serialized[1..65]);
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::super::{Random, Generator};
|
|
use super::{public_add, public_sub};
|
|
|
|
#[test]
|
|
fn public_addition_is_commutative() {
|
|
let public1 = Random.generate().unwrap().public().clone();
|
|
let public2 = Random.generate().unwrap().public().clone();
|
|
|
|
let mut left = public1.clone();
|
|
public_add(&mut left, &public2).unwrap();
|
|
|
|
let mut right = public2.clone();
|
|
public_add(&mut right, &public1).unwrap();
|
|
|
|
assert_eq!(left, right);
|
|
}
|
|
|
|
#[test]
|
|
fn public_addition_is_reversible_with_subtraction() {
|
|
let public1 = Random.generate().unwrap().public().clone();
|
|
let public2 = Random.generate().unwrap().public().clone();
|
|
|
|
let mut sum = public1.clone();
|
|
public_add(&mut sum, &public2).unwrap();
|
|
public_sub(&mut sum, &public2).unwrap();
|
|
|
|
assert_eq!(sum, public1);
|
|
}
|
|
}
|