openethereum/src/account.rs
2016-01-13 18:37:09 +01:00

629 lines
19 KiB
Rust

use util::*;
use itertools::Itertools;
pub const SHA3_EMPTY: H256 = H256( [0xc5, 0xd2, 0x46, 0x01, 0x86, 0xf7, 0x23, 0x3c, 0x92, 0x7e, 0x7d, 0xb2, 0xdc, 0xc7, 0x03, 0xc0, 0xe5, 0x00, 0xb6, 0x53, 0xca, 0x82, 0x27, 0x3b, 0x7b, 0xfa, 0xd8, 0x04, 0x5d, 0x85, 0xa4, 0x70] );
#[derive(Debug,Clone,PartialEq,Eq)]
pub struct Diff<T> where T: Eq {
pub pre: T,
pub post_opt: Option<T>,
}
impl<T> Diff<T> where T: Eq {
pub fn new_opt(pre: T, post: T) -> Option<Self> { if pre == post { None } else { Some(Self::new(pre, post)) } }
pub fn one_opt(t: T) -> Option<Self> { Some(Self::one(t)) }
pub fn new(pre: T, post: T) -> Self { Diff { pre: pre, post_opt: Some(post) }}
pub fn one(t: T) -> Self { Diff { pre: t, post_opt: None }}
pub fn pre(&self) -> &T { &self.pre }
pub fn post(&self) -> &T { match self.post_opt { Some(ref x) => x, None => &self.pre } }
}
impl<T> From<T> for Diff<T> where T: Eq {
fn from(t: T) -> Diff<T> {
Diff::one(t)
}
}
#[derive(Debug,Clone,PartialEq,Eq)]
/// Genesis account data. Does not have a DB overlay cache.
pub struct PodAccount {
// Balance of the account.
pub balance: U256,
// Nonce of the account.
pub nonce: U256,
pub code: Bytes,
pub storage: BTreeMap<H256, H256>,
}
#[derive(Debug,Clone,PartialEq,Eq)]
pub struct AccountDiff {
pub exists: Diff<bool>,
pub balance: Option<Diff<U256>>,
pub nonce: Option<Diff<U256>>,
pub code: Option<Diff<Bytes>>,
pub storage: BTreeMap<H256, Diff<H256>>,
}
pub type StateDiff = BTreeMap<Address, AccountDiff>;
pub fn pod_diff(pre: Option<&PodAccount>, post: Option<&PodAccount>) -> Option<AccountDiff> {
match (pre, post) {
(Some(x), None) | (None, Some(x)) => Some(AccountDiff {
exists: Diff::new(pre.is_some(), post.is_some()),
balance: Diff::one_opt(x.balance.clone()),
nonce: Diff::one_opt(x.nonce.clone()),
code: Diff::one_opt(x.code.clone()),
storage: x.storage.iter().fold(BTreeMap::new(), |mut m, (k, v)| {m.insert(k.clone(), Diff::one(v.clone())); m})
}),
(Some(pre), Some(post)) => {
let storage: Vec<_> = pre.storage.keys().merge(post.storage.keys())
.filter(|k| pre.storage.get(k).unwrap_or(&H256::new()) != post.storage.get(k).unwrap_or(&H256::new()))
.collect();
if pre.balance != post.balance || pre.nonce != post.nonce || pre.code != post.code || storage.len() > 0 {
Some(AccountDiff {
exists: Diff::one(true),
balance: Diff::new_opt(pre.balance.clone(), post.balance.clone()),
nonce: Diff::new_opt(pre.nonce.clone(), post.nonce.clone()),
code: Diff::new_opt(pre.code.clone(), post.code.clone()),
storage: storage.into_iter().fold(BTreeMap::new(), |mut m, k| {
let v = Diff::new(pre.storage.get(&k).cloned().unwrap_or(H256::new()), post.storage.get(&k).cloned().unwrap_or(H256::new()));
m.insert((*k).clone(), v);
m
}),
})
} else {
None
}
},
_ => None,
}
}
pub fn pod_map_diff(pre: &BTreeMap<Address, PodAccount>, post: &BTreeMap<Address, PodAccount>) -> StateDiff {
pre.keys()
.merge(post.keys())
.filter_map(|acc| pod_diff(pre.get(acc), post.get(acc)).map(|d|(acc.clone(), d)))
.collect::<BTreeMap<_, _>>()
}
macro_rules! map {
( $( $x:expr => $y:expr ),* ) => {
vec![ $( ($x, $y) ),* ].into_iter().collect::<BTreeMap<_, _>>()
}
}
macro_rules! x {
( $x:expr ) => {
From::from($x)
}
}
macro_rules! xx {
( $x:expr ) => {
From::from(From::from($x))
}
}
#[test]
fn state_diff_create_delete() {
let a = map![
x!(1) => PodAccount{
balance: x!(69),
nonce: x!(0),
code: vec![],
storage: map![]
}
];
assert_eq!(pod_map_diff(&a, &map![]), map![
x!(1) => AccountDiff{
exists: Diff::new(true, false),
balance: Diff::one_opt(x!(69)),
nonce: Diff::one_opt(x!(0)),
code: Diff::one_opt(vec![]),
storage: map![],
}
]);
assert_eq!(pod_map_diff(&map![], &a), map![
x!(1) => AccountDiff{
exists: Diff::new(false, true),
balance: Diff::one_opt(x!(69)),
nonce: Diff::one_opt(x!(0)),
code: Diff::one_opt(vec![]),
storage: map![],
}
]);
}
#[test]
fn state_diff_cretae_delete_with_unchanged() {
let a = map![
x!(1) => PodAccount{
balance: x!(69),
nonce: x!(0),
code: vec![],
storage: map![]
}
];
let b = map![
x!(1) => PodAccount{
balance: x!(69),
nonce: x!(0),
code: vec![],
storage: map![]
},
x!(2) => PodAccount{
balance: x!(69),
nonce: x!(0),
code: vec![],
storage: map![]
}
];
assert_eq!(pod_map_diff(&a, &b), map![
x!(2) => AccountDiff{
exists: Diff::new(false, true),
balance: Diff::one_opt(x!(69)),
nonce: Diff::one_opt(x!(0)),
code: Diff::one_opt(vec![]),
storage: map![],
}
]);
assert_eq!(pod_map_diff(&b, &a), map![
x!(2) => AccountDiff{
exists: Diff::new(true, false),
balance: Diff::one_opt(x!(69)),
nonce: Diff::one_opt(x!(0)),
code: Diff::one_opt(vec![]),
storage: map![],
}
]);
}
#[test]
fn state_diff_change_with_unchanged() {
let a = map![
x!(1) => PodAccount{
balance: x!(69),
nonce: x!(0),
code: vec![],
storage: map![]
},
x!(2) => PodAccount{
balance: x!(69),
nonce: x!(0),
code: vec![],
storage: map![]
}
];
let b = map![
x!(1) => PodAccount{
balance: x!(69),
nonce: x!(1),
code: vec![],
storage: map![]
},
x!(2) => PodAccount{
balance: x!(69),
nonce: x!(0),
code: vec![],
storage: map![]
}
];
assert_eq!(pod_map_diff(&a, &b), map![
x!(1) => AccountDiff{
exists: Diff::one(true),
balance: None,
nonce: Diff::new_opt(x!(0), x!(1)),
code: None,
storage: map![],
}
]);
}
#[test]
fn account_diff_existence() {
let a = PodAccount{balance: x!(69), nonce: x!(0), code: vec![], storage: map![]};
assert_eq!(pod_diff(Some(&a), Some(&a)), None);
assert_eq!(pod_diff(None, Some(&a)), Some(AccountDiff{
exists: Diff::new(false, true),
balance: Diff::one_opt(x!(69)),
nonce: Diff::one_opt(x!(0)),
code: Diff::one_opt(vec![]),
storage: map![],
}));
}
#[test]
fn account_diff_basic() {
let a = PodAccount{balance: U256::from(69u64), nonce: U256::zero(), code: vec![], storage: BTreeMap::new()};
let b = PodAccount{balance: U256::from(42u64), nonce: U256::from(1u64), code: vec![], storage: BTreeMap::new()};
assert_eq!(pod_diff(Some(&a), Some(&b)), Some(AccountDiff {
exists: Diff::one(true),
balance: Diff::new_opt(U256::from(69u64), U256::from(42u64)),
nonce: Diff::new_opt(U256::zero(), U256::from(1u64)),
code: None,
storage: BTreeMap::new(),
}));
}
#[test]
fn account_diff_code() {
let a = PodAccount{balance: U256::zero(), nonce: U256::zero(), code: vec![], storage: BTreeMap::new()};
let b = PodAccount{balance: U256::zero(), nonce: U256::from(1u64), code: vec![0x00u8], storage: BTreeMap::new()};
assert_eq!(pod_diff(Some(&a), Some(&b)), Some(AccountDiff {
exists: Diff::one(true),
balance: None,
nonce: Diff::new_opt(U256::zero(), U256::from(1u64)),
code: Diff::new_opt(vec![], vec![0x00u8]),
storage: BTreeMap::new(),
}));
}
pub fn h256_from_u8(v: u8) -> H256 {
let mut r = H256::new();
r[31] = v;
r
}
#[test]
fn account_diff_storage() {
let a = PodAccount{balance: U256::zero(), nonce: U256::zero(), code: vec![], storage: vec![(1u8, 1u8), (2, 2), (3, 3), (4, 4), (5, 0), (6, 0), (7, 0)].into_iter().fold(BTreeMap::new(), |mut m, (k, v)|{m.insert(h256_from_u8(k), h256_from_u8(v)); m})};
let b = PodAccount{balance: U256::zero(), nonce: U256::zero(), code: vec![], storage: vec![(1u8, 1u8), (2, 3), (3, 0), (5, 0), (7, 7), (8, 0), (9, 9)].into_iter().fold(BTreeMap::new(), |mut m, (k, v)|{m.insert(h256_from_u8(k), h256_from_u8(v)); m})};
assert_eq!(pod_diff(Some(&a), Some(&b)), Some(AccountDiff {
exists: Diff::one(true),
balance: None,
nonce: None,
code: None,
storage: vec![
(2u8, Diff::new(h256_from_u8(2), h256_from_u8(3))),
(3, Diff::new(h256_from_u8(3), H256::new())),
(4, Diff::new(h256_from_u8(4), H256::new())),
(7, Diff::new(H256::new(), h256_from_u8(7))),
(9, Diff::new(H256::new(), h256_from_u8(9))),
].into_iter().fold(BTreeMap::new(), |mut m, (k, v)|{m.insert(h256_from_u8(k), v); m})
}));
}
/// Single account in the system.
#[derive(Clone)]
pub struct Account {
// Balance of the account.
balance: U256,
// Nonce of the account.
nonce: U256,
// Trie-backed storage.
storage_root: H256,
// Overlay on trie-backed storage.
storage_overlay: RefCell<HashMap<H256, H256>>,
// Code hash of the account. If None, means that it's a contract whose code has not yet been set.
code_hash: Option<H256>,
// Code cache of the account.
code_cache: Bytes,
}
impl PodAccount {
/// Convert Account to a PodAccount.
/// NOTE: This will silently fail unless the account is fully cached.
pub fn from_account(acc: &Account) -> PodAccount {
PodAccount {
balance: acc.balance.clone(),
nonce: acc.nonce.clone(),
storage: acc.storage_overlay.borrow().iter().fold(BTreeMap::new(), |mut m, (k, v)| {m.insert(k.clone(), v.clone()); m}),
code: acc.code_cache.clone()
}
}
pub fn rlp(&self) -> Bytes {
let mut stream = RlpStream::new_list(4);
stream.append(&self.nonce);
stream.append(&self.balance);
// TODO.
stream.append(&SHA3_NULL_RLP);
stream.append(&self.code.sha3());
stream.out()
}
}
impl Account {
/// General constructor.
pub fn new(balance: U256, nonce: U256, storage: HashMap<H256, H256>, code: Bytes) -> Account {
Account {
balance: balance,
nonce: nonce,
storage_root: SHA3_NULL_RLP,
storage_overlay: RefCell::new(storage),
code_hash: Some(code.sha3()),
code_cache: code
}
}
/// General constructor.
pub fn from_pod(pod: PodAccount) -> Account {
Account {
balance: pod.balance,
nonce: pod.nonce,
storage_root: SHA3_NULL_RLP,
storage_overlay: RefCell::new(pod.storage.into_iter().fold(HashMap::new(), |mut m, (k, v)| {m.insert(k, v); m})),
code_hash: Some(pod.code.sha3()),
code_cache: pod.code
}
}
/// Create a new account with the given balance.
pub fn new_basic(balance: U256, nonce: U256) -> Account {
Account {
balance: balance,
nonce: nonce,
storage_root: SHA3_NULL_RLP,
storage_overlay: RefCell::new(HashMap::new()),
code_hash: Some(SHA3_EMPTY),
code_cache: vec![],
}
}
/// Create a new account from RLP.
pub fn from_rlp(rlp: &[u8]) -> Account {
let r: Rlp = Rlp::new(rlp);
Account {
nonce: r.val_at(0),
balance: r.val_at(1),
storage_root: r.val_at(2),
storage_overlay: RefCell::new(HashMap::new()),
code_hash: Some(r.val_at(3)),
code_cache: vec![],
}
}
/// Create a new contract account.
/// NOTE: make sure you use `init_code` on this before `commit`ing.
pub fn new_contract(balance: U256) -> Account {
Account {
balance: balance,
nonce: U256::from(0u8),
storage_root: SHA3_NULL_RLP,
storage_overlay: RefCell::new(HashMap::new()),
code_hash: None,
code_cache: vec![],
}
}
/// Reset this account to the status of a not-yet-initialised contract.
/// NOTE: Account should have `init_code()` called on it later.
pub fn reset_code(&mut self) {
self.code_hash = None;
self.code_cache = vec![];
}
/// Set this account's code to the given code.
/// NOTE: Account should have been created with `new_contract()` or have `reset_code()` called on it.
pub fn init_code(&mut self, code: Bytes) {
assert!(self.code_hash.is_none());
self.code_cache = code;
}
/// Set (and cache) the contents of the trie's storage at `key` to `value`.
pub fn set_storage(&mut self, key: H256, value: H256) {
self.storage_overlay.borrow_mut().insert(key, value);
}
/// Get (and cache) the contents of the trie's storage at `key`.
pub fn storage_at(&self, db: &HashDB, key: &H256) -> H256 {
self.storage_overlay.borrow_mut().entry(key.clone()).or_insert_with(||{
H256::from_slice(TrieDB::new(db, &self.storage_root).get(key.bytes()).unwrap_or(&[0u8;32][..]))
}).clone()
}
/// return the balance associated with this account.
pub fn balance(&self) -> &U256 { &self.balance }
/// return the nonce associated with this account.
pub fn nonce(&self) -> &U256 { &self.nonce }
/// return the code hash associated with this account.
pub fn code_hash(&self) -> H256 {
self.code_hash.clone().unwrap_or(SHA3_EMPTY)
}
/// returns the account's code. If `None` then the code cache isn't available -
/// get someone who knows to call `note_code`.
pub fn code(&self) -> Option<&[u8]> {
match self.code_hash {
Some(SHA3_EMPTY) | None if self.code_cache.is_empty() => Some(&self.code_cache),
Some(_) if !self.code_cache.is_empty() => Some(&self.code_cache),
None => Some(&self.code_cache),
_ => None,
}
}
/// Provide a byte array which hashes to the `code_hash`. returns the hash as a result.
pub fn note_code(&mut self, code: Bytes) -> Result<(), H256> {
let h = code.sha3();
match self.code_hash {
Some(ref i) if h == *i => {
self.code_cache = code;
Ok(())
},
_ => Err(h)
}
}
/// Is `code_cache` valid; such that code is going to return Some?
pub fn is_cached(&self) -> bool {
!self.code_cache.is_empty() || (self.code_cache.is_empty() && self.code_hash == Some(SHA3_EMPTY))
}
/// Provide a database to lookup `code_hash`. Should not be called if it is a contract without code.
pub fn cache_code(&mut self, db: &HashDB) -> bool {
// TODO: fill out self.code_cache;
/* return !self.is_cached() ||
match db.lookup(&self.code_hash.unwrap()) { // why doesn't this work? unwrap causes move?!
Some(x) => { self.code_cache = x.to_vec(); true },
_ => { false }
}*/
if self.is_cached() { return true; }
return if let Some(ref h) = self.code_hash {
match db.lookup(&h) {
Some(x) => { self.code_cache = x.to_vec(); true },
_ => { false }
}
} else { false }
}
/// return the storage root associated with this account.
pub fn base_root(&self) -> &H256 { &self.storage_root }
/// return the storage root associated with this account or None if it has been altered via the overlay.
pub fn storage_root(&self) -> Option<&H256> { if self.storage_overlay.borrow().is_empty() {Some(&self.storage_root)} else {None} }
/// rturn the storage overlay.
pub fn storage_overlay(&self) -> Ref<HashMap<H256, H256>> { self.storage_overlay.borrow() }
/// Increment the nonce of the account by one.
pub fn inc_nonce(&mut self) { self.nonce = self.nonce + U256::from(1u8); }
/// Increment the nonce of the account by one.
pub fn add_balance(&mut self, x: &U256) { self.balance = self.balance + *x; }
/// Increment the nonce of the account by one.
pub fn sub_balance(&mut self, x: &U256) { self.balance = self.balance - *x; }
/// Commit the `storage_overlay` to the backing DB and update `storage_root`.
pub fn commit_storage(&mut self, db: &mut HashDB) {
let mut t = TrieDBMut::new(db, &mut self.storage_root);
for (k, v) in self.storage_overlay.borrow().iter() {
// cast key and value to trait type,
// so we can call overloaded `to_bytes` method
t.insert(k, v);
}
self.storage_overlay.borrow_mut().clear();
}
/// Commit any unsaved code. `code_hash` will always return the hash of the `code_cache` after this.
pub fn commit_code(&mut self, db: &mut HashDB) {
trace!("Commiting code of {:?} - {:?}, {:?}", self, self.code_hash.is_none(), self.code_cache.is_empty());
match (self.code_hash.is_none(), self.code_cache.is_empty()) {
(true, true) => self.code_hash = Some(SHA3_EMPTY),
(true, false) => {
println!("Writing into DB {:?}", self.code_cache);
self.code_hash = Some(db.insert(&self.code_cache));
},
(false, _) => {},
}
}
/// Export to RLP.
pub fn rlp(&self) -> Bytes {
let mut stream = RlpStream::new_list(4);
stream.append(&self.nonce);
stream.append(&self.balance);
stream.append(&self.storage_root);
stream.append(self.code_hash.as_ref().expect("Cannot form RLP of contract account without code."));
stream.out()
}
}
impl fmt::Debug for Account {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", PodAccount::from_account(self))
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::collections::HashMap;
use util::hash::*;
use util::bytes::*;
use util::rlp::*;
use util::uint::*;
use util::overlaydb::*;
#[test]
fn storage_at() {
let mut db = OverlayDB::new_temp();
let rlp = {
let mut a = Account::new_contract(U256::from(69u8));
a.set_storage(H256::from(&U256::from(0x00u64)), H256::from(&U256::from(0x1234u64)));
a.commit_storage(&mut db);
a.init_code(vec![]);
a.commit_code(&mut db);
a.rlp()
};
let a = Account::from_rlp(&rlp);
assert_eq!(a.storage_root().unwrap().hex(), "3541f181d6dad5c504371884684d08c29a8bad04926f8ceddf5e279dbc3cc769");
assert_eq!(a.storage_at(&mut db, &H256::from(&U256::from(0x00u64))), H256::from(&U256::from(0x1234u64)));
assert_eq!(a.storage_at(&mut db, &H256::from(&U256::from(0x01u64))), H256::new());
}
#[test]
fn note_code() {
let mut db = OverlayDB::new_temp();
let rlp = {
let mut a = Account::new_contract(U256::from(69u8));
a.init_code(vec![0x55, 0x44, 0xffu8]);
a.commit_code(&mut db);
a.rlp()
};
let mut a = Account::from_rlp(&rlp);
assert_eq!(a.cache_code(&db), true);
let mut a = Account::from_rlp(&rlp);
assert_eq!(a.note_code(vec![0x55, 0x44, 0xffu8]), Ok(()));
}
#[test]
fn commit_storage() {
let mut a = Account::new_contract(U256::from(69u8));
let mut db = OverlayDB::new_temp();
a.set_storage(H256::from(&U256::from(0x00u64)), H256::from(&U256::from(0x1234u64)));
assert_eq!(a.storage_root(), None);
a.commit_storage(&mut db);
assert_eq!(a.storage_root().unwrap().hex(), "3541f181d6dad5c504371884684d08c29a8bad04926f8ceddf5e279dbc3cc769");
}
#[test]
fn commit_code() {
let mut a = Account::new_contract(U256::from(69u8));
let mut db = OverlayDB::new_temp();
a.init_code(vec![0x55, 0x44, 0xffu8]);
assert_eq!(a.code_hash(), SHA3_EMPTY);
a.commit_code(&mut db);
assert_eq!(a.code_hash().hex(), "af231e631776a517ca23125370d542873eca1fb4d613ed9b5d5335a46ae5b7eb");
}
#[test]
fn rlpio() {
let a = Account::new(U256::from(69u8), U256::from(0u8), HashMap::new(), Bytes::new());
let b = Account::from_rlp(&a.rlp());
assert_eq!(a.balance(), b.balance());
assert_eq!(a.nonce(), b.nonce());
assert_eq!(a.code_hash(), b.code_hash());
assert_eq!(a.storage_root(), b.storage_root());
}
#[test]
fn new_account() {
use rustc_serialize::hex::ToHex;
let a = Account::new(U256::from(69u8), U256::from(0u8), HashMap::new(), Bytes::new());
assert_eq!(a.rlp().to_hex(), "f8448045a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421a0c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470");
assert_eq!(a.balance(), &U256::from(69u8));
assert_eq!(a.nonce(), &U256::from(0u8));
assert_eq!(a.code_hash(), SHA3_EMPTY);
assert_eq!(a.storage_root().unwrap(), &SHA3_NULL_RLP);
}
#[test]
fn create_account() {
use rustc_serialize::hex::ToHex;
let a = Account::new(U256::from(69u8), U256::from(0u8), HashMap::new(), Bytes::new());
assert_eq!(a.rlp().to_hex(), "f8448045a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421a0c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470");
}
}