openethereum/crates/ethcore/types/src/transaction/transaction.rs

1341 lines
46 KiB
Rust

// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of OpenEthereum.
// OpenEthereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// OpenEthereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with OpenEthereum. If not, see <http://www.gnu.org/licenses/>.
//! Transaction data structure.
use crate::{
crypto::publickey::{self, public_to_address, recover, Public, Secret, Signature},
hash::keccak,
transaction::error,
};
use ethereum_types::{Address, BigEndianHash, H160, H256, U256};
use parity_util_mem::MallocSizeOf;
use rlp::{self, DecoderError, Rlp, RlpStream};
use std::{cmp::min, ops::Deref};
pub type AccessListItem = (H160, Vec<H256>);
pub type AccessList = Vec<AccessListItem>;
use super::TypedTxId;
type Bytes = Vec<u8>;
type BlockNumber = u64;
/// Fake address for unsigned transactions as defined by EIP-86.
pub const UNSIGNED_SENDER: Address = H160([0xff; 20]);
/// System sender address for internal state updates.
pub const SYSTEM_ADDRESS: Address = H160([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xfe,
]);
/// Transaction action type.
#[derive(Debug, Clone, PartialEq, Eq, MallocSizeOf)]
pub enum Action {
/// Create creates new contract.
Create,
/// Calls contract at given address.
/// In the case of a transfer, this is the receiver's address.'
Call(Address),
}
impl Default for Action {
fn default() -> Action {
Action::Create
}
}
impl rlp::Decodable for Action {
fn decode(rlp: &Rlp) -> Result<Self, DecoderError> {
if rlp.is_empty() {
if rlp.is_data() {
Ok(Action::Create)
} else {
Err(DecoderError::RlpExpectedToBeData)
}
} else {
Ok(Action::Call(rlp.as_val()?))
}
}
}
impl rlp::Encodable for Action {
fn rlp_append(&self, s: &mut RlpStream) {
match *self {
Action::Create => s.append_internal(&""),
Action::Call(ref addr) => s.append_internal(addr),
};
}
}
/// Transaction activation condition.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Condition {
/// Valid at this block number or later.
Number(BlockNumber),
/// Valid at this unix time or later.
Timestamp(u64),
}
/// Replay protection logic for v part of transaction's signature
pub mod signature {
/// Adds chain id into v
pub fn add_chain_replay_protection(v: u8, chain_id: Option<u64>) -> u64 {
v as u64
+ if let Some(n) = chain_id {
35 + n * 2
} else {
27
}
}
/// Returns refined v
/// 0 if `v` would have been 27 under "Electrum" notation, 1 if 28 or 4 if invalid.
pub fn extract_standard_v(v: u64) -> u8 {
match v {
v if v == 27 => 0,
v if v == 28 => 1,
v if v >= 35 => ((v - 1) % 2) as u8,
_ => 4,
}
}
pub fn extract_chain_id_from_legacy_v(v: u64) -> Option<u64> {
if v >= 35 {
Some((v - 35) / 2 as u64)
} else {
None
}
}
}
/// A set of information describing an externally-originating message call
/// or contract creation operation.
#[derive(Default, Debug, Clone, PartialEq, Eq, MallocSizeOf)]
pub struct Transaction {
/// Nonce.
pub nonce: U256,
/// Gas price for non 1559 transactions. MaxFeePerGas for 1559 transactions.
pub gas_price: U256,
/// Gas paid up front for transaction execution.
pub gas: U256,
/// Action, can be either call or contract create.
pub action: Action,
/// Transfered value.s
pub value: U256,
/// Transaction data.
pub data: Bytes,
}
impl Transaction {
/// encode raw transaction
fn encode(&self, chain_id: Option<u64>, signature: Option<&SignatureComponents>) -> Vec<u8> {
let mut stream = RlpStream::new();
self.encode_rlp(&mut stream, chain_id, signature);
stream.drain()
}
pub fn rlp_append(
&self,
rlp: &mut RlpStream,
chain_id: Option<u64>,
signature: &SignatureComponents,
) {
self.encode_rlp(rlp, chain_id, Some(signature));
}
fn encode_rlp(
&self,
rlp: &mut RlpStream,
chain_id: Option<u64>,
signature: Option<&SignatureComponents>,
) {
let list_size = if chain_id.is_some() || signature.is_some() {
9
} else {
6
};
rlp.begin_list(list_size);
self.rlp_append_data_open(rlp);
//append signature if given. If not, try to append chainId.
if let Some(signature) = signature {
signature.rlp_append_with_chain_id(rlp, chain_id);
} else {
if let Some(n) = chain_id {
rlp.append(&n);
rlp.append(&0u8);
rlp.append(&0u8);
}
}
}
fn rlp_append_data_open(&self, s: &mut RlpStream) {
s.append(&self.nonce);
s.append(&self.gas_price);
s.append(&self.gas);
s.append(&self.action);
s.append(&self.value);
s.append(&self.data);
}
fn decode(d: &Rlp) -> Result<UnverifiedTransaction, DecoderError> {
if d.item_count()? != 9 {
return Err(DecoderError::RlpIncorrectListLen);
}
let hash = keccak(d.as_raw());
let transaction = TypedTransaction::Legacy(Self::decode_data(d, 0)?);
// take V from signatuere and decompose it into chain_id and standard V.
let legacy_v: u64 = d.val_at(6)?;
let signature = SignatureComponents {
standard_v: signature::extract_standard_v(legacy_v),
r: d.val_at(7)?,
s: d.val_at(8)?,
};
Ok(UnverifiedTransaction::new(
transaction,
signature::extract_chain_id_from_legacy_v(legacy_v),
signature,
hash,
))
}
fn decode_data(d: &Rlp, offset: usize) -> Result<Transaction, DecoderError> {
Ok(Transaction {
nonce: d.val_at(offset)?,
gas_price: d.val_at(offset + 1)?,
gas: d.val_at(offset + 2)?,
action: d.val_at(offset + 3)?,
value: d.val_at(offset + 4)?,
data: d.val_at(offset + 5)?,
})
}
}
#[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)]
pub struct AccessListTx {
pub transaction: Transaction,
//optional access list
pub access_list: AccessList,
}
impl AccessListTx {
pub fn new(transaction: Transaction, access_list: AccessList) -> AccessListTx {
AccessListTx {
transaction,
access_list,
}
}
pub fn tx_type(&self) -> TypedTxId {
TypedTxId::AccessList
}
pub fn tx(&self) -> &Transaction {
&self.transaction
}
pub fn tx_mut(&mut self) -> &mut Transaction {
&mut self.transaction
}
// decode bytes by this payload spec: rlp([1, [chainId, nonce, gasPrice, gasLimit, to, value, data, access_list, senderV, senderR, senderS]])
pub fn decode(tx: &[u8]) -> Result<UnverifiedTransaction, DecoderError> {
let tx_rlp = &Rlp::new(tx);
// we need to have 11 items in this list
if tx_rlp.item_count()? != 11 {
return Err(DecoderError::RlpIncorrectListLen);
}
let chain_id = Some(tx_rlp.val_at(0)?);
//let chain_id = if chain_id == 0 { None } else { Some(chain_id) };
// first part of list is same as legacy transaction and we are reusing that part.
let transaction = Transaction::decode_data(&tx_rlp, 1)?;
// access list we get from here
let accl_rlp = tx_rlp.at(7)?;
// access_list pattern: [[{20 bytes}, [{32 bytes}...]]...]
let mut accl: AccessList = Vec::new();
for i in 0..accl_rlp.item_count()? {
let accounts = accl_rlp.at(i)?;
// check if there is list of 2 items
if accounts.item_count()? != 2 {
return Err(DecoderError::Custom("Unknown access list length"));
}
accl.push((accounts.val_at(0)?, accounts.list_at(1)?));
}
// we get signature part from here
let signature = SignatureComponents {
standard_v: tx_rlp.val_at(8)?,
r: tx_rlp.val_at(9)?,
s: tx_rlp.val_at(10)?,
};
// and here we create UnverifiedTransaction and calculate its hash
Ok(UnverifiedTransaction::new(
TypedTransaction::AccessList(AccessListTx {
transaction,
access_list: accl,
}),
chain_id,
signature,
H256::zero(),
)
.compute_hash())
}
fn encode_payload(
&self,
chain_id: Option<u64>,
signature: Option<&SignatureComponents>,
) -> RlpStream {
let mut stream = RlpStream::new();
let list_size = if signature.is_some() { 11 } else { 8 };
stream.begin_list(list_size);
// append chain_id. from EIP-2930: chainId is defined to be an integer of arbitrary size.
stream.append(&(if let Some(n) = chain_id { n } else { 0 }));
// append legacy transaction
self.transaction.rlp_append_data_open(&mut stream);
// access list
stream.begin_list(self.access_list.len());
for access in self.access_list.iter() {
stream.begin_list(2);
stream.append(&access.0);
stream.begin_list(access.1.len());
for storage_key in access.1.iter() {
stream.append(storage_key);
}
}
// append signature if any
if let Some(signature) = signature {
signature.rlp_append(&mut stream);
}
stream
}
// encode by this payload spec: 0x01 | rlp([1, [chain_id, nonce, gasPrice, gasLimit, to, value, data, access_list, senderV, senderR, senderS]])
pub fn encode(
&self,
chain_id: Option<u64>,
signature: Option<&SignatureComponents>,
) -> Vec<u8> {
let stream = self.encode_payload(chain_id, signature);
// make as vector of bytes
[&[TypedTxId::AccessList as u8], stream.as_raw()].concat()
}
pub fn rlp_append(
&self,
rlp: &mut RlpStream,
chain_id: Option<u64>,
signature: &SignatureComponents,
) {
rlp.append(&self.encode(chain_id, Some(signature)));
}
}
#[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)]
pub struct EIP1559TransactionTx {
pub transaction: AccessListTx,
pub max_priority_fee_per_gas: U256,
}
impl EIP1559TransactionTx {
pub fn tx_type(&self) -> TypedTxId {
TypedTxId::EIP1559Transaction
}
pub fn tx(&self) -> &Transaction {
&self.transaction.tx()
}
pub fn tx_mut(&mut self) -> &mut Transaction {
self.transaction.tx_mut()
}
// decode bytes by this payload spec: rlp([2, [chainId, nonce, maxPriorityFeePerGas, maxFeePerGas(gasPrice), gasLimit, to, value, data, access_list, senderV, senderR, senderS]])
pub fn decode(tx: &[u8]) -> Result<UnverifiedTransaction, DecoderError> {
let tx_rlp = &Rlp::new(tx);
// we need to have 12 items in this list
if tx_rlp.item_count()? != 12 {
return Err(DecoderError::RlpIncorrectListLen);
}
let chain_id = Some(tx_rlp.val_at(0)?);
let max_priority_fee_per_gas = tx_rlp.val_at(2)?;
let tx = Transaction {
nonce: tx_rlp.val_at(1)?,
gas_price: tx_rlp.val_at(3)?, //taken from max_fee_per_gas
gas: tx_rlp.val_at(4)?,
action: tx_rlp.val_at(5)?,
value: tx_rlp.val_at(6)?,
data: tx_rlp.val_at(7)?,
};
// access list we get from here
let accl_rlp = tx_rlp.at(8)?;
// access_list pattern: [[{20 bytes}, [{32 bytes}...]]...]
let mut accl: AccessList = Vec::new();
for i in 0..accl_rlp.item_count()? {
let accounts = accl_rlp.at(i)?;
// check if there is list of 2 items
if accounts.item_count()? != 2 {
return Err(DecoderError::Custom("Unknown access list length"));
}
accl.push((accounts.val_at(0)?, accounts.list_at(1)?));
}
// we get signature part from here
let signature = SignatureComponents {
standard_v: tx_rlp.val_at(9)?,
r: tx_rlp.val_at(10)?,
s: tx_rlp.val_at(11)?,
};
// and here we create UnverifiedTransaction and calculate its hash
Ok(UnverifiedTransaction::new(
TypedTransaction::EIP1559Transaction(EIP1559TransactionTx {
transaction: AccessListTx::new(tx, accl),
max_priority_fee_per_gas,
}),
chain_id,
signature,
H256::zero(),
)
.compute_hash())
}
fn encode_payload(
&self,
chain_id: Option<u64>,
signature: Option<&SignatureComponents>,
) -> RlpStream {
let mut stream = RlpStream::new();
let list_size = if signature.is_some() { 12 } else { 9 };
stream.begin_list(list_size);
// append chain_id. from EIP-2930: chainId is defined to be an integer of arbitrary size.
stream.append(&(if let Some(n) = chain_id { n } else { 0 }));
stream.append(&self.tx().nonce);
stream.append(&self.max_priority_fee_per_gas);
stream.append(&self.tx().gas_price);
stream.append(&self.tx().gas);
stream.append(&self.tx().action);
stream.append(&self.tx().value);
stream.append(&self.tx().data);
// access list
stream.begin_list(self.transaction.access_list.len());
for access in self.transaction.access_list.iter() {
stream.begin_list(2);
stream.append(&access.0);
stream.begin_list(access.1.len());
for storage_key in access.1.iter() {
stream.append(storage_key);
}
}
// append signature if any
if let Some(signature) = signature {
signature.rlp_append(&mut stream);
}
stream
}
// encode by this payload spec: 0x02 | rlp([2, [chainId, nonce, maxPriorityFeePerGas, maxFeePerGas(gasPrice), gasLimit, to, value, data, access_list, senderV, senderR, senderS]])
pub fn encode(
&self,
chain_id: Option<u64>,
signature: Option<&SignatureComponents>,
) -> Vec<u8> {
let stream = self.encode_payload(chain_id, signature);
// make as vector of bytes
[&[TypedTxId::EIP1559Transaction as u8], stream.as_raw()].concat()
}
pub fn rlp_append(
&self,
rlp: &mut RlpStream,
chain_id: Option<u64>,
signature: &SignatureComponents,
) {
rlp.append(&self.encode(chain_id, Some(signature)));
}
}
#[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)]
pub enum TypedTransaction {
Legacy(Transaction), // old legacy RLP encoded transaction
AccessList(AccessListTx), // EIP-2930 Transaction with a list of addresses and storage keys that the transaction plans to access.
// Accesses outside the list are possible, but become more expensive.
EIP1559Transaction(EIP1559TransactionTx),
}
impl TypedTransaction {
pub fn tx_type(&self) -> TypedTxId {
match self {
Self::Legacy(_) => TypedTxId::Legacy,
Self::AccessList(_) => TypedTxId::AccessList,
Self::EIP1559Transaction(_) => TypedTxId::EIP1559Transaction,
}
}
/// The message hash of the transaction.
pub fn signature_hash(&self, chain_id: Option<u64>) -> H256 {
keccak(match self {
Self::Legacy(tx) => tx.encode(chain_id, None),
Self::AccessList(tx) => tx.encode(chain_id, None),
Self::EIP1559Transaction(tx) => tx.encode(chain_id, None),
})
}
/// Signs the transaction as coming from `sender`.
pub fn sign(self, secret: &Secret, chain_id: Option<u64>) -> SignedTransaction {
let sig = publickey::sign(secret, &self.signature_hash(chain_id))
.expect("data is valid and context has signing capabilities; qed");
SignedTransaction::new(self.with_signature(sig, chain_id))
.expect("secret is valid so it's recoverable")
}
/// Signs the transaction with signature.
pub fn with_signature(self, sig: Signature, chain_id: Option<u64>) -> UnverifiedTransaction {
UnverifiedTransaction {
unsigned: self,
chain_id,
signature: SignatureComponents {
r: sig.r().into(),
s: sig.s().into(),
standard_v: sig.v().into(),
},
hash: H256::zero(),
}
.compute_hash()
}
/// Specify the sender; this won't survive the serialize/deserialize process, but can be cloned.
pub fn fake_sign(self, from: Address) -> SignedTransaction {
SignedTransaction {
transaction: UnverifiedTransaction {
unsigned: self,
chain_id: None,
signature: SignatureComponents {
r: U256::one(),
s: U256::one(),
standard_v: 4,
},
hash: H256::zero(),
}
.compute_hash(),
sender: from,
public: None,
}
}
/// Legacy EIP-86 compatible empty signature.
/// This method is used in json tests as well as
/// signature verification tests.
pub fn null_sign(self, chain_id: u64) -> SignedTransaction {
SignedTransaction {
transaction: UnverifiedTransaction {
unsigned: self,
chain_id: Some(chain_id),
signature: SignatureComponents {
r: U256::zero(),
s: U256::zero(),
standard_v: 0,
},
hash: H256::zero(),
}
.compute_hash(),
sender: UNSIGNED_SENDER,
public: None,
}
}
/// Useful for test incorrectly signed transactions.
#[cfg(test)]
pub fn invalid_sign(self) -> UnverifiedTransaction {
UnverifiedTransaction {
unsigned: self,
chain_id: None,
signature: SignatureComponents {
r: U256::one(),
s: U256::one(),
standard_v: 0,
},
hash: H256::zero(),
}
.compute_hash()
}
// Next functions are for encoded/decode
pub fn tx(&self) -> &Transaction {
match self {
Self::Legacy(tx) => tx,
Self::AccessList(ocl) => ocl.tx(),
Self::EIP1559Transaction(tx) => tx.tx(),
}
}
pub fn tx_mut(&mut self) -> &mut Transaction {
match self {
Self::Legacy(tx) => tx,
Self::AccessList(ocl) => ocl.tx_mut(),
Self::EIP1559Transaction(tx) => tx.tx_mut(),
}
}
pub fn access_list(&self) -> Option<&AccessList> {
match self {
Self::EIP1559Transaction(tx) => Some(&tx.transaction.access_list),
Self::AccessList(tx) => Some(&tx.access_list),
Self::Legacy(_) => None,
}
}
pub fn effective_gas_price(&self, block_base_fee: Option<U256>) -> U256 {
match self {
Self::EIP1559Transaction(tx) => min(
self.tx().gas_price,
tx.max_priority_fee_per_gas + block_base_fee.unwrap_or_default(),
),
Self::AccessList(_) => self.tx().gas_price,
Self::Legacy(_) => self.tx().gas_price,
}
}
pub fn max_priority_fee_per_gas(&self) -> U256 {
match self {
Self::EIP1559Transaction(tx) => tx.max_priority_fee_per_gas,
Self::AccessList(tx) => tx.tx().gas_price,
Self::Legacy(tx) => tx.gas_price,
}
}
pub fn effective_priority_fee(&self, block_base_fee: Option<U256>) -> U256 {
self.effective_gas_price(block_base_fee)
.checked_sub(block_base_fee.unwrap_or_default())
.unwrap_or_default()
}
pub fn is_service(&self) -> bool {
match self {
Self::EIP1559Transaction(tx) => {
tx.tx().gas_price == 0.into() && tx.max_priority_fee_per_gas == 0.into()
}
Self::AccessList(tx) => tx.tx().gas_price == 0.into(),
Self::Legacy(tx) => tx.gas_price == 0.into(),
}
}
fn decode_new(tx: &[u8]) -> Result<UnverifiedTransaction, DecoderError> {
if tx.is_empty() {
// at least one byte needs to be present
return Err(DecoderError::RlpIncorrectListLen);
}
let id = TypedTxId::try_from_wire_byte(tx[0]);
if id.is_err() {
return Err(DecoderError::Custom("Unknown transaction"));
}
// other transaction types
match id.unwrap() {
TypedTxId::EIP1559Transaction => EIP1559TransactionTx::decode(&tx[1..]),
TypedTxId::AccessList => AccessListTx::decode(&tx[1..]),
TypedTxId::Legacy => return Err(DecoderError::Custom("Unknown transaction legacy")),
}
}
pub fn decode(tx: &[u8]) -> Result<UnverifiedTransaction, DecoderError> {
if tx.is_empty() {
// at least one byte needs to be present
return Err(DecoderError::RlpIncorrectListLen);
}
let header = tx[0];
// type of transaction can be obtained from first byte. If first bit is 1 it means we are dealing with RLP list.
// if it is 0 it means that we are dealing with custom transaction defined in EIP-2718.
if (header & 0x80) != 0x00 {
Transaction::decode(&Rlp::new(tx))
} else {
Self::decode_new(tx)
}
}
pub fn decode_rlp_list(rlp: &Rlp) -> Result<Vec<UnverifiedTransaction>, DecoderError> {
if !rlp.is_list() {
// at least one byte needs to be present
return Err(DecoderError::RlpIncorrectListLen);
}
let mut output = Vec::with_capacity(rlp.item_count()?);
for tx in rlp.iter() {
output.push(Self::decode_rlp(&tx)?);
}
Ok(output)
}
pub fn decode_rlp(tx: &Rlp) -> Result<UnverifiedTransaction, DecoderError> {
if tx.is_list() {
//legacy transaction wrapped around RLP encoding
Transaction::decode(tx)
} else {
Self::decode_new(tx.data()?)
}
}
fn rlp_append(
&self,
s: &mut RlpStream,
chain_id: Option<u64>,
signature: &SignatureComponents,
) {
match self {
Self::Legacy(tx) => tx.rlp_append(s, chain_id, signature),
Self::AccessList(opt) => opt.rlp_append(s, chain_id, signature),
Self::EIP1559Transaction(tx) => tx.rlp_append(s, chain_id, signature),
}
}
pub fn rlp_append_list(s: &mut RlpStream, tx_list: &[UnverifiedTransaction]) {
s.begin_list(tx_list.len());
for tx in tx_list.iter() {
tx.unsigned.rlp_append(s, tx.chain_id, &tx.signature);
}
}
fn encode(&self, chain_id: Option<u64>, signature: &SignatureComponents) -> Vec<u8> {
let signature = Some(signature);
match self {
Self::Legacy(tx) => tx.encode(chain_id, signature),
Self::AccessList(opt) => opt.encode(chain_id, signature),
Self::EIP1559Transaction(tx) => tx.encode(chain_id, signature),
}
}
}
/// Components that constitute transaction signature
#[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)]
pub struct SignatureComponents {
/// The V field of the signature; the LS bit described which half of the curve our point falls
/// in. It can be 0 or 1.
pub standard_v: u8,
/// The R field of the signature; helps describe the point on the curve.
pub r: U256,
/// The S field of the signature; helps describe the point on the curve.
pub s: U256,
}
impl SignatureComponents {
pub fn rlp_append(&self, s: &mut RlpStream) {
s.append(&self.standard_v);
s.append(&self.r);
s.append(&self.s);
}
pub fn rlp_append_with_chain_id(&self, s: &mut RlpStream, chain_id: Option<u64>) {
s.append(&signature::add_chain_replay_protection(
self.standard_v,
chain_id,
));
s.append(&self.r);
s.append(&self.s);
}
}
/// Signed transaction information without verified signature.
#[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)]
pub struct UnverifiedTransaction {
/// Plain Transaction.
pub unsigned: TypedTransaction,
/// Transaction signature
pub signature: SignatureComponents,
/// chain_id recover from signature in legacy transaction. For TypedTransaction it is probably separate field.
pub chain_id: Option<u64>,
/// Hash of the transaction
pub hash: H256,
}
impl Deref for UnverifiedTransaction {
type Target = TypedTransaction;
fn deref(&self) -> &Self::Target {
&self.unsigned
}
}
impl UnverifiedTransaction {
pub fn rlp_append(&self, s: &mut RlpStream) {
self.unsigned.rlp_append(s, self.chain_id, &self.signature);
}
pub fn rlp_append_list(s: &mut RlpStream, tx_list: &[UnverifiedTransaction]) {
s.begin_list(tx_list.len());
for tx in tx_list.iter() {
tx.unsigned.rlp_append(s, tx.chain_id, &tx.signature);
}
}
pub fn encode(&self) -> Vec<u8> {
self.unsigned.encode(self.chain_id, &self.signature)
}
/// Used to compute hash of created transactions.
pub fn compute_hash(mut self) -> UnverifiedTransaction {
let hash = keccak(&*self.encode());
self.hash = hash;
self
}
/// Used by TypedTransaction to create UnverifiedTransaction.
fn new(
transaction: TypedTransaction,
chain_id: Option<u64>,
signature: SignatureComponents,
hash: H256,
) -> UnverifiedTransaction {
UnverifiedTransaction {
unsigned: transaction,
chain_id,
signature,
hash,
}
}
/// Checks if the signature is empty.
pub fn is_unsigned(&self) -> bool {
self.signature.r.is_zero() && self.signature.s.is_zero()
}
/// Reference to unsigned part of this transaction.
pub fn as_unsigned(&self) -> &TypedTransaction {
&self.unsigned
}
/// Returns standardized `v` value (0, 1 or 4 (invalid))
pub fn standard_v(&self) -> u8 {
self.signature.standard_v
}
/// The legacy `v` value that contains signatures v and chain_id for replay protection.
pub fn legacy_v(&self) -> u64 {
signature::add_chain_replay_protection(self.signature.standard_v, self.chain_id)
}
/// The `v` value that appears in the RLP.
pub fn v(&self) -> u64 {
match self.unsigned {
TypedTransaction::Legacy(_) => self.legacy_v(),
_ => self.signature.standard_v as u64,
}
}
/// The chain ID, or `None` if this is a global transaction.
pub fn chain_id(&self) -> Option<u64> {
self.chain_id
}
/// Construct a signature object from the sig.
pub fn signature(&self) -> Signature {
let r: H256 = BigEndianHash::from_uint(&self.signature.r);
let s: H256 = BigEndianHash::from_uint(&self.signature.s);
Signature::from_rsv(&r, &s, self.standard_v())
}
/// Checks whether the signature has a low 's' value.
pub fn check_low_s(&self) -> Result<(), publickey::Error> {
if !self.signature().is_low_s() {
Err(publickey::Error::InvalidSignature.into())
} else {
Ok(())
}
}
/// Get the hash of this transaction (keccak of the RLP).
pub fn hash(&self) -> H256 {
self.hash
}
/// Recovers the public key of the sender.
pub fn recover_public(&self) -> Result<Public, publickey::Error> {
Ok(recover(
&self.signature(),
&self.unsigned.signature_hash(self.chain_id()),
)?)
}
/// Verify basic signature params. Does not attempt sender recovery.
pub fn verify_basic(
&self,
check_low_s: bool,
chain_id: Option<u64>,
) -> Result<(), error::Error> {
if self.is_unsigned() {
return Err(publickey::Error::InvalidSignature.into());
}
if check_low_s {
self.check_low_s()?;
}
match (self.chain_id(), chain_id) {
(None, _) => {}
(Some(n), Some(m)) if n == m => {}
_ => return Err(error::Error::InvalidChainId),
};
Ok(())
}
}
/// A `UnverifiedTransaction` with successfully recovered `sender`.
#[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)]
pub struct SignedTransaction {
transaction: UnverifiedTransaction,
sender: Address,
public: Option<Public>,
}
impl Deref for SignedTransaction {
type Target = UnverifiedTransaction;
fn deref(&self) -> &Self::Target {
&self.transaction
}
}
impl From<SignedTransaction> for UnverifiedTransaction {
fn from(tx: SignedTransaction) -> Self {
tx.transaction
}
}
impl SignedTransaction {
// t_nb 5.3.1 Try to verify transaction and recover sender.
pub fn new(transaction: UnverifiedTransaction) -> Result<Self, publickey::Error> {
if transaction.is_unsigned() {
return Err(publickey::Error::InvalidSignature);
}
let public = transaction.recover_public()?;
let sender = public_to_address(&public);
Ok(SignedTransaction {
transaction,
sender,
public: Some(public),
})
}
/// Returns transaction sender.
pub fn sender(&self) -> Address {
self.sender
}
/// Returns a public key of the sender.
pub fn public_key(&self) -> Option<Public> {
self.public
}
/// Checks is signature is empty.
pub fn is_unsigned(&self) -> bool {
self.transaction.is_unsigned()
}
/// Deconstructs this transaction back into `UnverifiedTransaction`
pub fn deconstruct(self) -> (UnverifiedTransaction, Address, Option<Public>) {
(self.transaction, self.sender, self.public)
}
pub fn rlp_append_list(s: &mut RlpStream, tx_list: &[SignedTransaction]) {
s.begin_list(tx_list.len());
for tx in tx_list.iter() {
tx.unsigned.rlp_append(s, tx.chain_id, &tx.signature);
}
}
}
/// Signed Transaction that is a part of canon blockchain.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct LocalizedTransaction {
/// Signed part.
pub signed: UnverifiedTransaction,
/// Block number.
pub block_number: BlockNumber,
/// Block hash.
pub block_hash: H256,
/// Transaction index within block.
pub transaction_index: usize,
/// Cached sender
pub cached_sender: Option<Address>,
}
impl LocalizedTransaction {
/// Returns transaction sender.
/// Panics if `LocalizedTransaction` is constructed using invalid `UnverifiedTransaction`.
pub fn sender(&mut self) -> Address {
if let Some(sender) = self.cached_sender {
return sender;
}
if self.is_unsigned() {
return UNSIGNED_SENDER.clone();
}
let sender = public_to_address(&self.recover_public()
.expect("LocalizedTransaction is always constructed from transaction from blockchain; Blockchain only stores verified transactions; qed"));
self.cached_sender = Some(sender);
sender
}
}
impl Deref for LocalizedTransaction {
type Target = UnverifiedTransaction;
fn deref(&self) -> &Self::Target {
&self.signed
}
}
/// Queued transaction with additional information.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PendingTransaction {
/// Signed transaction data.
pub transaction: SignedTransaction,
/// To be activated at this condition. `None` for immediately.
pub condition: Option<Condition>,
}
impl PendingTransaction {
/// Create a new pending transaction from signed transaction.
pub fn new(signed: SignedTransaction, condition: Option<Condition>) -> Self {
PendingTransaction {
transaction: signed,
condition: condition,
}
}
}
impl Deref for PendingTransaction {
type Target = SignedTransaction;
fn deref(&self) -> &SignedTransaction {
&self.transaction
}
}
impl From<SignedTransaction> for PendingTransaction {
fn from(t: SignedTransaction) -> Self {
PendingTransaction {
transaction: t,
condition: None,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::hash::keccak;
use ethereum_types::{H160, U256};
use std::str::FromStr;
#[test]
fn sender_test() {
let bytes = ::rustc_hex::FromHex::from_hex("f85f800182520894095e7baea6a6c7c4c2dfeb977efac326af552d870a801ba048b55bfa915ac795c431978d8a6a992b628d557da5ff759b307d495a36649353a0efffd310ac743f371de3b9f7f9cb56c0b28ad43601b4ab949f53faa07bd2c804").unwrap();
let t = TypedTransaction::decode(&bytes).expect("decoding UnverifiedTransaction failed");
assert_eq!(t.tx().data, b"");
assert_eq!(t.tx().gas, U256::from(0x5208u64));
assert_eq!(t.tx().gas_price, U256::from(0x01u64));
assert_eq!(t.tx().nonce, U256::from(0x00u64));
if let Action::Call(ref to) = t.tx().action {
assert_eq!(
*to,
H160::from_str("095e7baea6a6c7c4c2dfeb977efac326af552d87").unwrap()
);
} else {
panic!();
}
assert_eq!(t.tx().value, U256::from(0x0au64));
assert_eq!(
public_to_address(&t.recover_public().unwrap()),
H160::from_str("0f65fe9276bc9a24ae7083ae28e2660ef72df99e").unwrap()
);
assert_eq!(t.chain_id(), None);
}
#[test]
fn empty_atom_as_create_action() {
let empty_atom = [0x80];
let action: Action = rlp::decode(&empty_atom).unwrap();
assert_eq!(action, Action::Create);
}
#[test]
fn empty_list_as_create_action_rejected() {
let empty_list = [0xc0];
let action: Result<Action, DecoderError> = rlp::decode(&empty_list);
assert_eq!(action, Err(DecoderError::RlpExpectedToBeData));
}
#[test]
fn signing_eip155_zero_chainid() {
use self::publickey::{Generator, Random};
let key = Random.generate();
let t = TypedTransaction::Legacy(Transaction {
action: Action::Create,
nonce: U256::from(42),
gas_price: U256::from(3000),
gas: U256::from(50_000),
value: U256::from(1),
data: b"Hello!".to_vec(),
});
let hash = t.signature_hash(Some(0));
let sig = publickey::sign(&key.secret(), &hash).unwrap();
let u = t.with_signature(sig, Some(0));
assert!(SignedTransaction::new(u).is_ok());
}
#[test]
fn signing() {
use self::publickey::{Generator, Random};
let key = Random.generate();
let t = TypedTransaction::Legacy(Transaction {
action: Action::Create,
nonce: U256::from(42),
gas_price: U256::from(3000),
gas: U256::from(50_000),
value: U256::from(1),
data: b"Hello!".to_vec(),
})
.sign(&key.secret(), None);
assert_eq!(Address::from(keccak(key.public())), t.sender());
assert_eq!(t.chain_id(), None);
}
#[test]
fn fake_signing() {
let t = TypedTransaction::Legacy(Transaction {
action: Action::Create,
nonce: U256::from(42),
gas_price: U256::from(3000),
gas: U256::from(50_000),
value: U256::from(1),
data: b"Hello!".to_vec(),
})
.fake_sign(Address::from_low_u64_be(0x69));
assert_eq!(Address::from_low_u64_be(0x69), t.sender());
assert_eq!(t.chain_id(), None);
let t = t.clone();
assert_eq!(Address::from_low_u64_be(0x69), t.sender());
assert_eq!(t.chain_id(), None);
}
#[test]
fn should_reject_null_signature() {
use std::str::FromStr;
let t = TypedTransaction::Legacy(Transaction {
nonce: U256::zero(),
gas_price: U256::from(10000000000u64),
gas: U256::from(21000),
action: Action::Call(
Address::from_str("d46e8dd67c5d32be8058bb8eb970870f07244567").unwrap(),
),
value: U256::from(1),
data: vec![],
})
.null_sign(1);
let res = SignedTransaction::new(t.transaction);
match res {
Err(publickey::Error::InvalidSignature) => {}
_ => panic!("null signature should be rejected"),
}
}
#[test]
fn should_recover_from_chain_specific_signing() {
use self::publickey::{Generator, Random};
let key = Random.generate();
let t = TypedTransaction::Legacy(Transaction {
action: Action::Create,
nonce: U256::from(42),
gas_price: U256::from(3000),
gas: U256::from(50_000),
value: U256::from(1),
data: b"Hello!".to_vec(),
})
.sign(&key.secret(), Some(69));
assert_eq!(Address::from(keccak(key.public())), t.sender());
assert_eq!(t.chain_id(), Some(69));
}
#[test]
fn should_encode_decode_access_list_tx() {
use self::publickey::{Generator, Random};
let key = Random.generate();
let t = TypedTransaction::AccessList(AccessListTx::new(
Transaction {
action: Action::Create,
nonce: U256::from(42),
gas_price: U256::from(3000),
gas: U256::from(50_000),
value: U256::from(1),
data: b"Hello!".to_vec(),
},
vec![
(
H160::from_low_u64_be(10),
vec![H256::from_low_u64_be(102), H256::from_low_u64_be(103)],
),
(H160::from_low_u64_be(400), vec![]),
],
))
.sign(&key.secret(), Some(69));
let encoded = t.encode();
let t_new =
TypedTransaction::decode(&encoded).expect("Error on UnverifiedTransaction decoder");
if t_new.unsigned != t.unsigned {
assert!(true, "encoded/decoded tx differs from original");
}
}
#[test]
fn should_encode_decode_eip1559_tx() {
use self::publickey::{Generator, Random};
let key = Random.generate();
let t = TypedTransaction::EIP1559Transaction(EIP1559TransactionTx {
transaction: AccessListTx::new(
Transaction {
action: Action::Create,
nonce: U256::from(42),
gas_price: U256::from(3000),
gas: U256::from(50_000),
value: U256::from(1),
data: b"Hello!".to_vec(),
},
vec![
(
H160::from_low_u64_be(10),
vec![H256::from_low_u64_be(102), H256::from_low_u64_be(103)],
),
(H160::from_low_u64_be(400), vec![]),
],
),
max_priority_fee_per_gas: U256::from(100),
})
.sign(&key.secret(), Some(69));
let encoded = t.encode();
let t_new =
TypedTransaction::decode(&encoded).expect("Error on UnverifiedTransaction decoder");
if t_new.unsigned != t.unsigned {
assert!(true, "encoded/decoded tx differs from original");
}
}
#[test]
fn should_decode_access_list_in_rlp() {
use rustc_hex::FromHex;
let encoded_tx = "b8cb01f8a7802a820bb882c35080018648656c6c6f21f872f85994000000000000000000000000000000000000000af842a00000000000000000000000000000000000000000000000000000000000000066a00000000000000000000000000000000000000000000000000000000000000067d6940000000000000000000000000000000000000190c080a00ea0f1fda860320f51e182fe68ea90a8e7611653d3975b9301580adade6b8aa4a023530a1a96e0f15f90959baf1cd2d9114f7c7568ac7d77f4413c0a6ca6cdac74";
let _ = TypedTransaction::decode_rlp(&Rlp::new(&FromHex::from_hex(encoded_tx).unwrap()))
.expect("decoding tx data failed");
}
#[test]
fn should_decode_eip1559_in_rlp() {
use rustc_hex::FromHex;
let encoded_tx = "b8cb01f8a7802a820bb882c35080018648656c6c6f21f872f85994000000000000000000000000000000000000000af842a00000000000000000000000000000000000000000000000000000000000000066a00000000000000000000000000000000000000000000000000000000000000067d6940000000000000000000000000000000000000190c080a00ea0f1fda860320f51e182fe68ea90a8e7611653d3975b9301580adade6b8aa4a023530a1a96e0f15f90959baf1cd2d9114f7c7568ac7d77f4413c0a6ca6cdac74";
let _ = TypedTransaction::decode_rlp(&Rlp::new(&FromHex::from_hex(encoded_tx).unwrap()))
.expect("decoding tx data failed");
}
#[test]
fn should_decode_access_list_solo() {
use rustc_hex::FromHex;
let encoded_tx = "01f8630103018261a894b94f5374fce5edbc8e2a8697c15331677e6ebf0b0a825544c001a0cb51495c66325615bcd591505577c9dde87bd59b04be2e6ba82f6d7bdea576e3a049e4f02f37666bd91a052a56e91e71e438590df861031ee9a321ce058df3dc2b";
let _ = TypedTransaction::decode(&FromHex::from_hex(encoded_tx).unwrap())
.expect("decoding tx data failed");
}
#[test]
fn test_rlp_data() {
let mut rlp_list = RlpStream::new();
rlp_list.begin_list(3);
rlp_list.append(&100u8);
rlp_list.append(&"0000000");
rlp_list.append(&5u8);
let rlp_list = Rlp::new(rlp_list.as_raw());
println!("rlp list data: {:?}", rlp_list.as_raw());
let mut rlp = RlpStream::new();
rlp.append(&"1111111");
let rlp = Rlp::new(rlp.as_raw());
println!("rlp list data: {:?}", rlp.data());
}
#[test]
fn should_agree_with_geth_test() {
use rustc_hex::FromHex;
let encoded_tx = "01f8630103018261a894b94f5374fce5edbc8e2a8697c15331677e6ebf0b0a825544c001a0cb51495c66325615bcd591505577c9dde87bd59b04be2e6ba82f6d7bdea576e3a049e4f02f37666bd91a052a56e91e71e438590df861031ee9a321ce058df3dc2b";
let _ = TypedTransaction::decode(&FromHex::from_hex(encoded_tx).unwrap())
.expect("decoding tx data failed");
}
#[test]
fn should_agree_with_vitalik() {
use rustc_hex::FromHex;
let test_vector = |tx_data: &str, address: &'static str| {
let signed = TypedTransaction::decode(&FromHex::from_hex(tx_data).unwrap())
.expect("decoding tx data failed");
let signed = SignedTransaction::new(signed).unwrap();
assert_eq!(signed.sender(), H160::from_str(address).unwrap());
};
test_vector("f864808504a817c800825208943535353535353535353535353535353535353535808025a0044852b2a670ade5407e78fb2863c51de9fcb96542a07186fe3aeda6bb8a116da0044852b2a670ade5407e78fb2863c51de9fcb96542a07186fe3aeda6bb8a116d", "f0f6f18bca1b28cd68e4357452947e021241e9ce");
test_vector("f864018504a817c80182a410943535353535353535353535353535353535353535018025a0489efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bcaa0489efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6", "23ef145a395ea3fa3deb533b8a9e1b4c6c25d112");
test_vector("f864028504a817c80282f618943535353535353535353535353535353535353535088025a02d7c5bef027816a800da1736444fb58a807ef4c9603b7848673f7e3a68eb14a5a02d7c5bef027816a800da1736444fb58a807ef4c9603b7848673f7e3a68eb14a5", "2e485e0c23b4c3c542628a5f672eeab0ad4888be");
test_vector("f865038504a817c803830148209435353535353535353535353535353535353535351b8025a02a80e1ef1d7842f27f2e6be0972bb708b9a135c38860dbe73c27c3486c34f4e0a02a80e1ef1d7842f27f2e6be0972bb708b9a135c38860dbe73c27c3486c34f4de", "82a88539669a3fd524d669e858935de5e5410cf0");
test_vector("f865048504a817c80483019a28943535353535353535353535353535353535353535408025a013600b294191fc92924bb3ce4b969c1e7e2bab8f4c93c3fc6d0a51733df3c063a013600b294191fc92924bb3ce4b969c1e7e2bab8f4c93c3fc6d0a51733df3c060", "f9358f2538fd5ccfeb848b64a96b743fcc930554");
test_vector("f865058504a817c8058301ec309435353535353535353535353535353535353535357d8025a04eebf77a833b30520287ddd9478ff51abbdffa30aa90a8d655dba0e8a79ce0c1a04eebf77a833b30520287ddd9478ff51abbdffa30aa90a8d655dba0e8a79ce0c1", "a8f7aba377317440bc5b26198a363ad22af1f3a4");
test_vector("f866068504a817c80683023e3894353535353535353535353535353535353535353581d88025a06455bf8ea6e7463a1046a0b52804526e119b4bf5136279614e0b1e8e296a4e2fa06455bf8ea6e7463a1046a0b52804526e119b4bf5136279614e0b1e8e296a4e2d", "f1f571dc362a0e5b2696b8e775f8491d3e50de35");
test_vector("f867078504a817c807830290409435353535353535353535353535353535353535358201578025a052f1a9b320cab38e5da8a8f97989383aab0a49165fc91c737310e4f7e9821021a052f1a9b320cab38e5da8a8f97989383aab0a49165fc91c737310e4f7e9821021", "d37922162ab7cea97c97a87551ed02c9a38b7332");
test_vector("f867088504a817c8088302e2489435353535353535353535353535353535353535358202008025a064b1702d9298fee62dfeccc57d322a463ad55ca201256d01f62b45b2e1c21c12a064b1702d9298fee62dfeccc57d322a463ad55ca201256d01f62b45b2e1c21c10", "9bddad43f934d313c2b79ca28a432dd2b7281029");
test_vector("f867098504a817c809830334509435353535353535353535353535353535353535358202d98025a052f8f61201b2b11a78d6e866abc9c3db2ae8631fa656bfe5cb53668255367afba052f8f61201b2b11a78d6e866abc9c3db2ae8631fa656bfe5cb53668255367afb", "3c24d7329e92f84f08556ceb6df1cdb0104ca49f");
}
}