openethereum/secret_store/src/key_server_cluster/math.rs

388 lines
15 KiB
Rust

// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use ethkey::{Public, Secret, Random, Generator, math};
use key_server_cluster::Error;
#[derive(Debug)]
/// Encryption result.
pub struct EncryptedSecret {
/// Common encryption point.
pub common_point: Public,
/// Ecnrypted point.
pub encrypted_point: Public,
}
/// Generate random scalar
pub fn generate_random_scalar() -> Result<Secret, Error> {
Ok(Random.generate()?.secret().clone())
}
/// Generate random point
pub fn generate_random_point() -> Result<Public, Error> {
Ok(Random.generate()?.public().clone())
}
/// Update point by multiplying to random scalar
pub fn update_random_point(point: &mut Public) -> Result<(), Error> {
Ok(math::public_mul_secret(point, &generate_random_scalar()?)?)
}
/// Generate random polynom of threshold degree
pub fn generate_random_polynom(threshold: usize) -> Result<Vec<Secret>, Error> {
let mut polynom: Vec<_> = Vec::with_capacity(threshold + 1);
for _ in 0..threshold + 1 {
polynom.push(generate_random_scalar()?);
}
debug_assert_eq!(polynom.len(), threshold + 1);
Ok(polynom)
}
/// Compute value of polynom, using `node_number` as argument
pub fn compute_polynom(polynom: &[Secret], node_number: &Secret) -> Result<Secret, Error> {
debug_assert!(!polynom.is_empty());
let mut result = polynom[0].clone();
for i in 1..polynom.len() {
// calculate pow(node_number, i)
let mut appendum = node_number.clone();
appendum.pow(i)?;
// calculate coeff * pow(point, i)
appendum.mul(&polynom[i])?;
// calculate result + coeff * pow(point, i)
result.add(&appendum)?;
}
Ok(result)
}
/// Generate public keys for other participants.
pub fn public_values_generation(threshold: usize, derived_point: &Public, polynom1: &[Secret], polynom2: &[Secret]) -> Result<Vec<Public>, Error> {
debug_assert_eq!(polynom1.len(), threshold + 1);
debug_assert_eq!(polynom2.len(), threshold + 1);
// compute t+1 public values
let mut publics = Vec::with_capacity(threshold + 1);
for i in 0..threshold + 1 {
let coeff1 = &polynom1[i];
let mut multiplication1 = math::generation_point();
math::public_mul_secret(&mut multiplication1, &coeff1)?;
let coeff2 = &polynom2[i];
let mut multiplication2 = derived_point.clone();
math::public_mul_secret(&mut multiplication2, &coeff2)?;
math::public_add(&mut multiplication1, &multiplication2)?;
publics.push(multiplication1);
}
debug_assert_eq!(publics.len(), threshold + 1);
Ok(publics)
}
/// Check keys passed by other participants.
pub fn keys_verification(threshold: usize, derived_point: &Public, number_id: &Secret, secret1: &Secret, secret2: &Secret, publics: &[Public]) -> Result<bool, Error> {
// calculate left part
let mut multiplication1 = math::generation_point();
math::public_mul_secret(&mut multiplication1, secret1)?;
let mut multiplication2 = derived_point.clone();
math::public_mul_secret(&mut multiplication2, secret2)?;
math::public_add(&mut multiplication1, &multiplication2)?;
let left = multiplication1;
// calculate right part
let mut right = publics[0].clone();
for i in 1..threshold + 1 {
let mut secret_pow = number_id.clone();
secret_pow.pow(i)?;
let mut public_k = publics[i].clone();
math::public_mul_secret(&mut public_k, &secret_pow)?;
math::public_add(&mut right, &public_k)?;
}
Ok(left == right)
}
/// Compute secret share.
pub fn compute_secret_share<'a, I>(mut secret_values: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
let mut secret_share = secret_values.next().expect("compute_secret_share is called when cluster has at least one node; qed").clone();
while let Some(secret_value) = secret_values.next() {
secret_share.add(secret_value)?;
}
Ok(secret_share)
}
/// Compute public key share.
pub fn compute_public_share(self_secret_value: &Secret) -> Result<Public, Error> {
let mut public_share = math::generation_point();
math::public_mul_secret(&mut public_share, self_secret_value)?;
Ok(public_share)
}
/// Compute joint public key.
pub fn compute_joint_public<'a, I>(mut public_shares: I) -> Result<Public, Error> where I: Iterator<Item=&'a Public> {
let mut joint_public = public_shares.next().expect("compute_joint_public is called when cluster has at least one node; qed").clone();
while let Some(public_share) = public_shares.next() {
math::public_add(&mut joint_public, &public_share)?;
}
Ok(joint_public)
}
#[cfg(test)]
/// Compute joint secret key.
pub fn compute_joint_secret<'a, I>(mut secret_coeffs: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
let mut joint_secret = secret_coeffs.next().expect("compute_joint_private is called when cluster has at least one node; qed").clone();
while let Some(secret_coeff) = secret_coeffs.next() {
joint_secret.add(secret_coeff)?;
}
Ok(joint_secret)
}
/// Encrypt secret with joint public key.
pub fn encrypt_secret(secret: &Public, joint_public: &Public) -> Result<EncryptedSecret, Error> {
// this is performed by KS-cluster client (or KS master)
let key_pair = Random.generate()?;
// k * T
let mut common_point = math::generation_point();
math::public_mul_secret(&mut common_point, key_pair.secret())?;
// M + k * y
let mut encrypted_point = joint_public.clone();
math::public_mul_secret(&mut encrypted_point, key_pair.secret())?;
math::public_add(&mut encrypted_point, secret)?;
Ok(EncryptedSecret {
common_point: common_point,
encrypted_point: encrypted_point,
})
}
/// Compute shadow for the node.
pub fn compute_node_shadow<'a, I>(node_number: &Secret, node_secret_share: &Secret, mut other_nodes_numbers: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
let other_node_number = match other_nodes_numbers.next() {
Some(other_node_number) => other_node_number,
None => return Ok(node_secret_share.clone()),
};
let mut shadow = node_number.clone();
shadow.sub(other_node_number)?;
shadow.inv()?;
shadow.mul(other_node_number)?;
while let Some(other_node_number) = other_nodes_numbers.next() {
let mut shadow_element = node_number.clone();
shadow_element.sub(other_node_number)?;
shadow_element.inv()?;
shadow_element.mul(other_node_number)?;
shadow.mul(&shadow_element)?;
}
shadow.mul(&node_secret_share)?;
Ok(shadow)
}
/// Compute shadow point for the node.
pub fn compute_node_shadow_point(access_key: &Secret, common_point: &Public, node_shadow: &Secret, decrypt_shadow: Option<Secret>) -> Result<(Public, Option<Secret>), Error> {
let mut shadow_key = node_shadow.clone();
let decrypt_shadow = match decrypt_shadow {
None => None,
Some(mut decrypt_shadow) => {
// update shadow key
shadow_key.mul(&decrypt_shadow)?;
// now udate decrypt shadow itself
decrypt_shadow.dec()?;
decrypt_shadow.mul(node_shadow)?;
Some(decrypt_shadow)
}
};
shadow_key.mul(access_key)?;
let mut node_shadow_point = common_point.clone();
math::public_mul_secret(&mut node_shadow_point, &shadow_key)?;
Ok((node_shadow_point, decrypt_shadow))
}
/// Compute joint shadow point.
pub fn compute_joint_shadow_point<'a, I>(mut nodes_shadow_points: I) -> Result<Public, Error> where I: Iterator<Item=&'a Public> {
let mut joint_shadow_point = nodes_shadow_points.next().expect("compute_joint_shadow_point is called when at least two nodes are required to decrypt secret; qed").clone();
while let Some(node_shadow_point) = nodes_shadow_points.next() {
math::public_add(&mut joint_shadow_point, &node_shadow_point)?;
}
Ok(joint_shadow_point)
}
#[cfg(test)]
/// Compute joint shadow point (version for tests).
pub fn compute_joint_shadow_point_test<'a, I>(access_key: &Secret, common_point: &Public, mut nodes_shadows: I) -> Result<Public, Error> where I: Iterator<Item=&'a Secret> {
let mut joint_shadow = nodes_shadows.next().expect("compute_joint_shadow_point_test is called when at least two nodes are required to decrypt secret; qed").clone();
while let Some(node_shadow) = nodes_shadows.next() {
joint_shadow.add(node_shadow)?;
}
joint_shadow.mul(access_key)?;
let mut joint_shadow_point = common_point.clone();
math::public_mul_secret(&mut joint_shadow_point, &joint_shadow)?;
Ok(joint_shadow_point)
}
/// Decrypt data using joint shadow point.
pub fn decrypt_with_joint_shadow(threshold: usize, access_key: &Secret, encrypted_point: &Public, joint_shadow_point: &Public) -> Result<Public, Error> {
let mut inv_access_key = access_key.clone();
inv_access_key.inv()?;
let mut mul = joint_shadow_point.clone();
math::public_mul_secret(&mut mul, &inv_access_key)?;
let mut decrypted_point = encrypted_point.clone();
if threshold % 2 != 0 {
math::public_add(&mut decrypted_point, &mul)?;
} else {
math::public_sub(&mut decrypted_point, &mul)?;
}
Ok(decrypted_point)
}
/// Prepare common point for shadow decryption.
pub fn make_common_shadow_point(threshold: usize, mut common_point: Public) -> Result<Public, Error> {
if threshold % 2 != 1 {
Ok(common_point)
} else {
math::public_negate(&mut common_point)?;
Ok(common_point)
}
}
#[cfg(test)]
/// Decrypt shadow-encrypted secret.
pub fn decrypt_with_shadow_coefficients(mut decrypted_shadow: Public, mut common_shadow_point: Public, shadow_coefficients: Vec<Secret>) -> Result<Public, Error> {
let mut shadow_coefficients_sum = shadow_coefficients[0].clone();
for shadow_coefficient in shadow_coefficients.iter().skip(1) {
shadow_coefficients_sum.add(shadow_coefficient)?;
}
math::public_mul_secret(&mut common_shadow_point, &shadow_coefficients_sum)?;
math::public_add(&mut decrypted_shadow, &common_shadow_point)?;
Ok(decrypted_shadow)
}
#[cfg(test)]
/// Decrypt data using joint secret (version for tests).
pub fn decrypt_with_joint_secret(encrypted_point: &Public, common_point: &Public, joint_secret: &Secret) -> Result<Public, Error> {
let mut common_point_mul = common_point.clone();
math::public_mul_secret(&mut common_point_mul, joint_secret)?;
let mut decrypted_point = encrypted_point.clone();
math::public_sub(&mut decrypted_point, &common_point_mul)?;
Ok(decrypted_point)
}
#[cfg(test)]
pub mod tests {
use ethkey::KeyPair;
use super::*;
pub fn do_encryption_and_decryption(t: usize, joint_public: &Public, id_numbers: &[Secret], secret_shares: &[Secret], joint_secret: Option<&Secret>, document_secret_plain: Public) -> (Public, Public) {
// === PART2: encryption using joint public key ===
// the next line is executed on KeyServer-client
let encrypted_secret = encrypt_secret(&document_secret_plain, &joint_public).unwrap();
// === PART3: decryption ===
// next line is executed on KeyServer client
let access_key = generate_random_scalar().unwrap();
// use t + 1 nodes to compute joint shadow point
let nodes_shadows: Vec<_> = (0..t + 1).map(|i|
compute_node_shadow(&id_numbers[i], &secret_shares[i], id_numbers.iter()
.enumerate()
.filter(|&(j, _)| j != i)
.take(t)
.map(|(_, id_number)| id_number)).unwrap()).collect();
let nodes_shadow_points: Vec<_> = nodes_shadows.iter()
.map(|s| compute_node_shadow_point(&access_key, &encrypted_secret.common_point, s, None).unwrap())
.map(|sp| sp.0)
.collect();
assert_eq!(nodes_shadows.len(), t + 1);
assert_eq!(nodes_shadow_points.len(), t + 1);
let joint_shadow_point = compute_joint_shadow_point(nodes_shadow_points.iter()).unwrap();
let joint_shadow_point_test = compute_joint_shadow_point_test(&access_key, &encrypted_secret.common_point, nodes_shadows.iter()).unwrap();
assert_eq!(joint_shadow_point, joint_shadow_point_test);
// decrypt encrypted secret using joint shadow point
let document_secret_decrypted = decrypt_with_joint_shadow(t, &access_key, &encrypted_secret.encrypted_point, &joint_shadow_point).unwrap();
// decrypt encrypted secret using joint secret [just for test]
let document_secret_decrypted_test = match joint_secret {
Some(joint_secret) => decrypt_with_joint_secret(&encrypted_secret.encrypted_point, &encrypted_secret.common_point, joint_secret).unwrap(),
None => document_secret_decrypted.clone(),
};
(document_secret_decrypted, document_secret_decrypted_test)
}
#[test]
fn full_encryption_math_session() {
let test_cases = [(0, 2), (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5),
(1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), (9, 10)];
for &(t, n) in &test_cases {
// === PART1: DKG ===
// data, gathered during initialization
let id_numbers: Vec<_> = (0..n).map(|_| generate_random_scalar().unwrap()).collect();
// data, generated during keys dissemination
let polynoms1: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect();
let secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms1[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
// data, generated during keys generation
let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&polynoms1[i][0]).unwrap()).collect();
let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(secrets1.iter().map(|s| &s[i])).unwrap()).collect();
// joint public key, as a result of DKG
let joint_public = compute_joint_public(public_shares.iter()).unwrap();
// compute joint private key [just for test]
let joint_secret = compute_joint_secret(polynoms1.iter().map(|p| &p[0])).unwrap();
let joint_key_pair = KeyPair::from_secret(joint_secret.clone()).unwrap();
assert_eq!(&joint_public, joint_key_pair.public());
// check secret shares computation [just for test]
let secret_shares_polynom: Vec<_> = (0..t + 1).map(|k| compute_secret_share(polynoms1.iter().map(|p| &p[k])).unwrap()).collect();
let secret_shares_calculated_from_polynom: Vec<_> = id_numbers.iter().map(|id_number| compute_polynom(&*secret_shares_polynom, id_number).unwrap()).collect();
assert_eq!(secret_shares, secret_shares_calculated_from_polynom);
// now encrypt and decrypt data
let document_secret_plain = generate_random_point().unwrap();
let (document_secret_decrypted, document_secret_decrypted_test) =
do_encryption_and_decryption(t, &joint_public, &id_numbers, &secret_shares, Some(&joint_secret), document_secret_plain.clone());
assert_eq!(document_secret_plain, document_secret_decrypted_test);
assert_eq!(document_secret_plain, document_secret_decrypted);
}
}
}